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Descriptive inorganic chemistry was traditionally concerned with the prop-

erties of the elements and their compounds. Now, in the renaissance of the 

subject, the properties are being linked with explanations for the formulas and 

structures of compounds together with an understanding of the chemical reac-

tions they undergo. In addition, we are no longer looking at inorganic chemistry 

as an isolated subject but as a part of essential scientif c knowledge with appli-

cations throughout science and our lives. And it is because of a need for greater 

contextualization that we have added more relevance by means of the new 

chapter openers: Context.

In many colleges and universities, descriptive inorganic chemistry is offered 

as a sophomore or junior course. In this way, students come to know something 

of the fundamental properties of important and interesting elements and their 

compounds. Such knowledge is important for careers not only in pure or 

applied chemistry but also in pharmacy, medicine, geology, environmental sci-

ence, and other scientif c f elds. This course can then be followed by a junior or 

senior course that focuses on the theoretical principles and the use of spectros-

copy to a greater depth than is covered in a descriptive text. In fact, the theo-

retical course builds nicely on the descriptive background. Without the 

descriptive grounding, however, the theory becomes sterile, uninteresting, and 

irrelevant.

This book was written to pass on to another generation our fascination with 

descriptive inorganic chemistry. Thus, the comments of the readers, both stu-

dents and instructors, will be sincerely appreciated. Our current e-mail 

addresses are: grcanham@grenfell.mun.ca and T.L.Overton@hull.ac.uk.

What Is Descriptive Inorganic 
Chemistry?

mailto:grcanham@grenfell.mun.ca
mailto:Overton@hull.ac.uk


Descriptive Inorganic chemistry goes beyond academic interest; 
it is an important part of our lives.

The role of inorganic chemistry in our lives is increasing. Thus, the sixth 

edition of Descriptive Inorganic Chemistry now has the following 

improvements:

Context: Each chapter opens with a Context, an aspect of inorganic chemistry 

which impinges on us in one way or another. Each of these contexts is intended 

to be thought-provoking and also ties in with an aspect of the chapter content.

Worked Examples: Sprinkled throughout the chapters, we have added Worked 
Examples, so that students can see how content relates to principles.

New Discoveries: In addition to some reorganization of content and an 

increased use of subheadings, we have added new discoveries to show that 

descriptive inorganic chemistry is alive and well as the twenty-f rst century 

progresses.

Predominance Diagrams: To provide a visual display of which species of an 

element or ion are present under specif c conditions, comparative predomi-

nance diagrams have been added, where appropriate.

Chapter 1: The Electronic Structure of the Atom: A Review
Addition of discussion of f-orbitals.

Chapter 2: The Structure of the Periodic Table
Inclusion of relativistic effects.

Improved discussion of electron aff nity patterns.

Chapter 3: Covalent Bonding and Molecular Spectroscopy
VSEPR theory now precedes molecular orbital theory.

Improvement of spectroscopy discussion.

Chapter 4: Metallic Bonding and Alloys
Expansion of discussion on alloys.

Addition of subsection on quasicrystals.

Chapter 5: Ionic Bonding and Solid-State Structures
Consolidation of solid-state structures into this one chapter.

Addition of a section on crystal defects and nonstoichiometric compounds.

Chapter 6: Why Compounds Exist—Inorganic Thermodynamics
Discussion on nonexistent compounds.

New section on lattice energies and comparative ion sizes and charges.

Chapter 7: Solvent Systems and Acid-Bases Behavior
Revised section on acid-base reactions of oxides.

PREFACE



Chapter 8: Oxidation and Reduction
Improved discussion of Frost diagrams.

Improved discussion of Pourbaix diagrams.

Chapter 9: Periodic Patterns
Revised section on the “knight’s move” relationship.

Revised section on the lanthanoid relationships.

Chapter 10: Hydrogen
New section on the trihydrogen ion.

Chapter 11: The Group 1 Elements: The Alkali Metals
Restructuring of chapter.

Chapter 12: The Group 2 Elements: The Alkaline Earth Metals
Restructuring of chapter.

Chapter 13: The Group 13 Elements
Minor changes.

Chapter 14: The Group 14 Elements
Revised comparison of carbon and silicon.

Additional subsection in carbides on MAX phases.

Chapter 15: The Group 15 Elements: The Pnictogens
Revised comparison of nitrogen and phosphorus.

Additional discussion of nitrogen species such as pentazole.

Chapter 16: The Group 16 Elements: The Chalcogens
Additional subsections on octaoxygen and dihydrogen dioxide.

New section on oxygen and the atmosphere.

Chapter 17: The Group 17 Elements: The Halogens
Restructuring of chapter.

Chapter 18: The Group 18 Elements: The Noble Gases
New section on compounds of helium, argon, and krypton.

New section on other xenon compounds.

Chapter 19: Transition Metal Complexes
More detailed discussion on crystal f eld theory.

New section on reaction mechanisms.

Chapter 20: The 3d Transition Metals
New section on the V-Cr-Mn triad.

New section on the Fe-Co-Ni triad.

Chapter 21: The 4d and 5d Transition Metals
Restructuring of chapter.

Chapter 22: The Group 12 Elements
Updating of chapter.

Chapter 23: Organometallic Chemistry
Updating of chapter.

Chapter 24: The Rare Earth, Actinoid, and Postactinoid Elements—web
Updating of chapter.



ANCILLARY SUPPORT

Student Support Resources

Book Companion Site
The Descriptive Inorganic Chemistry Book Companion Site, www.whfreeman.

com/descriptive6e, contains the following student friendly materials:

■ Chapter 24 Although the lanthanoids, actinoids, and postactinoid 

elements are of interest and of increasing importance, as few instructors 

cover these elements, the chapter is only available on-line. 

■ Appendices 9 and 10 To save space and paper, these lengthy appen-

dices are also available on the Book Companion Site. 

■ Video Demos Chemistry is a visual subject, thus over 60 video demos 

are on-line to match reactions described in the text. The text has a margin 

symbol to identify where there is a corresponding video demo.

■ Laboratory Experiments A series of experimental exercises are 

available to enable students to see a selection of the chemical reactions 

described in the text.

Student Solutions Manual
The Student Solutions Manual, ISBN: 1-4641-2560-0, contains the answers to 

the odd-numbered end-of-chapter questions.

The CourseSmart e-Textbook
The CourseSmart e-Textbook provides the full digital text, along with tools to 

take notes, search, and highlight passages. A free app allows access to Cours-

eSmart e-Textbooks and Android and Apple devices, such as the iPad. They can 

also be downloaded to your computer and accessed without an Internet con-

nection, removing any limitations for students when it comes to reading digital 

text. The CourseSmart e-Textbook can be purchased at www.coursesmart.com.

Instructor Resources

Book Companion Site
The password-protected instructor side of the Book Companion Site contains 

the Instructor’s Solutions Manual, with answers to the even-numbered end-of-

chapter questions, as well as all the illustrations and tables in the book, in .jpg 

and PowerPoint format. 

http://www.whfreeman.com/descriptive6e
http://www.coursesmart.com
http://www.whfreeman.com/descriptive6e


Each topic from the ACS guidelines listed below is followed by the corre-
sponding chapter(s) in Descriptive Inorganic Chemistry, 6th edition, [DIC6] 
in brackets.

■ Atomic Structure. Spectra and orbitals, ionization energy, electron aff nity, 

shielding and effective nuclear charge. [DIC6, Chapter 1]

■ Covalent Molecular Substances. Geometries (symmetry point groups), 

valence bond theory (hybridization, s, p, d bonds), molecular orbital theory 

(homonuclear and heteronuclear diatomics, multicentered MO, electron- 

def cient molecules, p-donor and acceptor ligands). [DIC6, Chapter 3 (and 
parts of 13 and 21)]

■ Main Group Elements. Synthesis, structure, physical properties, variations 

in bonding motifs, acid-base character, and reactivities of the elements and 

their compounds. [DIC6, Chapters 2, 6 through 18, 22]

■ Transition Elements and Coordination Chemistry. Ligands, coordination 

number, stereochemistry, bonding motifs, nomenclature; ligand f eld and 

molecular orbital theories, Jahn-Teller effects, magnetic properties, electronic 

spectroscopy (term symbols and spectrochemical series), thermodynamic 

aspects (formation constants, hydration enthalpies, chelate effect), kinetic 

aspects (ligand substitution, electron transfer, f uxional behavior), lan-

thanides, and actinides. [DIC6, Chapters 19, 20, 21, 24]

■ Organometallic Chemistry. Metal carbonyls, hydrocarbon and carbocyclic 

ligands, 18-electron rule (saturation and unsaturation), synthesis and proper-

ties, patterns of reactivity (substitution, oxidative-addition and reductive-

elimination, insertion and deinsertion, nucleophilic attack on ligands, 

isomerization, stereochemical nonrigidity). [DIC6, Chapter 23]

■ Solid-State Materials. Close packing in metals and metal compounds, 

metallic bonding, band theory, magnetic properties, conductivity, semiconduc-

tors, insulators, and defects. [DIC6, Chapters 4 and 5]

■ Special Topics. Catalysis and important industrial processes, bioinorganic 

chemistry, condensed materials containing chain, ring, sheet, cage, and net-

work structures, supramolecular structures, nanoscale structures and effects, 

surface chemistry, environmental and atmospheric chemistry. [DIC6, Topics 
incorporated throughout]

Correlation of Descriptive Inorganic Chemistry, 
6th Edition, with American Chemical Society 
Guidelines Committee on Professional Training, 
Inorganic Chemistry Supplement 2012



1.1  A Review of the Quantum Model

1.2 Shapes of the Atomic Orbitals

1.3 The Polyelectronic Atom

1.4 Ion Electron Conf gurations

1.5 Magnetic Properties of Atoms

Context: The Importance of the Lanthanoids

The cover design of this sixth edition of Descriptive Inorganic Chemistry 
highlights the lack of recycling of most of the metallic elements. In 

particular, very little of the elements from lanthanum to lutetium—

the lanthanoids—is reclaimed. Yet we are depending more and more on 

the unique properties of each of these metals to serve vital niche roles in 

our electronic-based civilization. For example, hybrid and all-electric 

vehicles rely on what are called nickel-metal hydride batteries for the 

energy storage. The metal is, in fact, lanthanum, and a hybrid vehicle 

 battery typically contains between 10 and 15 kilograms of lanthanum. 

The hybrid electric motor and generator itself contains neodymium, 

To understand the behavior of inorganic compounds, we need to study the nature 

of chemical bonding. Bonding, in turn, relates to the behavior of electrons in the 

constituent atoms. Our coverage of inorganic chemistry, therefore, starts with a survey 

of the quantum (probability) model’s applications to the electron conf gurations 

of atoms and ions. We will show how these conf gurations can be used to explain 

patterns and trends in common physical properties of atoms.

C H A P T E R  1THE ELECTRONIC 
STRUCTURE OF THE ATOM:
A Review

The lanthanoid elements (and yttrium) used in a typical hybrid vehicle.



2 CHAPTER 1 / The Electronic Structure of the Atom: A Review

praseodymium, dysprosium, and terbium; each metal performing a vital function. 

The f gure above shows the wide-ranging use of the lanthanoids (and yttrium) 

in a typical hybrid vehicle.

All modern high-performance magnets depend upon alloys containing 

neodymium, whether they are tiny magnets in the ear-pieces for audio devices 

or giant magnets in the turbines of commercial wind turbines. The brilliance of 

color displays for computers and televisions is commonly the result of emission 

from europium ions (for red), terbium ions (for green), and cerium ions (for 

blue). There are also many medical applications for these elements. For exam-

ple, gadolinium gives a strong image in a magnetic resonance imaging (MRI) 

scan. Thus, to see a f ner structure of blood vessels (and of tumors), an intrave-

nous injection of a gadolinium(III) compound is administered to a patient 

prior to performing an MRI scan.

The common feature of these elements is that, progressing from lanthanum 

to lutetium, the 4f orbitals are being f lled. Thus, in this chapter, we will not only 

review the s, p, and d orbitals which you have encountered in lower level courses, 

but also introduce you to the f orbitals.

1.1 A Review of the Quantum Model

The quantum model of atomic structure was derived from the work of Louis de 

Broglie. De Broglie showed that, just as electromagnetic waves could be treated 

as streams of particles (photons), moving particles could exhibit wavelike 

properties. Thus, it was equally valid to picture electrons either as particles or 

as waves. Using this wave-particle duality, Erwin Schrödinger developed a par-

tial differential equation to represent the behavior of an electron around an 

atomic nucleus.

The derivation of the equation and the method of solving it are in the realm 

of physics and physical chemistry, but the solution itself is of great importance 

to inorganic chemists. We should always keep in mind, however, that the wave 

equation is simply a mathematical formula. We attach meanings to the solution 

simply because most people need concrete images to think about subatomic 

phenomena. The conceptual models that we create in our macroscopic world 

cannot hope to reproduce the subatomic reality.

Quantum Numbers
There are a number of solutions to a wave equation. Each solution describes a 

different orbital and, hence, a different probability distribution for an electron 

in that orbital. Each of these orbitals is uniquely def ned by a set of three inte-

gers: n, l, and ml.

In addition to the three quantum numbers derived from the original theory, 

a fourth quantum number had to be def ned to explain the results of an exper-

iment in 1922. In this experiment, Otto Stern and Walther Gerlach found that 

passing a beam of silver atoms through a magnetic f eld caused about half the 

atoms to be def ected in one direction and the other half in the opposite direc-

tion. Other investigators proposed that the observation was the result of two 

different electronic spin orientations. The atoms possessing an electron with 
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one spin were def ected one way, and the atoms whose electron had the opposite 

spin were def ected in the opposite direction. This spin quantum number was 

assigned the symbol ms.

The possible values of the quantum numbers are def ned as follows:

n, the principal quantum number, can have all positive integer values from 

1 to `.

l, the angular momentum quantum number, can have all integer values 

from (n 2 1) to 0.

ml, the magnetic quantum number, can have all integer values from 1l 
through 0 to 2l.

ms, the spin quantum number, can have values of 11
2 and 21

2.

Values of Quantum Numbers
When the value of the principal quantum number is 1, there is only one possi-

ble set of quantum numbers n, l, and ml (1, 0, 0), whereas for a principal quan-

tum number of 2, there are four sets of quantum numbers (2, 0, 0; 2, 1, 21; 2, 1, 

0; 2, 1, 11). This situation is shown diagrammatically in Figure 1.1. To identify 

the electron orbital that corresponds to each set of quantum numbers, we use 

the value of the principal quantum number n, followed by a letter for the angu-

lar momentum quantum number l. Thus, when n 5 1, there is only the 1s orbital.

When n 5 2, there is one 2s orbital and three 2p orbitals (corresponding to 

the ml values of 11, 0, and 21). The letters s, p, d, and f are derived from catego-

ries of the spectral lines: sharp, principal, diffuse, and fundamental. The corre-

spondences are shown in Table 1.1.

FIGURE 1.1 The possible sets 
of quantum numbers for n 5 1 
and n 5 2.

n

l

ml

1s 2s 2p

�1 �100

0 1

1

0

0

2

TABLE 1.1 Correspondence between angular momentum 

number l and orbital designation

l Value Orbital designation

0 s

1 p

2 d

3 f
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When the principal quantum number is n 5 3, there are nine sets of quan-

tum numbers (Figure 1.2). These sets correspond to one 3s, three 3p, and f ve 3d 

orbitals. A similar diagram for the principal quantum number n 5 4 would 

show 16 sets of quantum numbers, corresponding to one 4s, three 4p, f ve 4d, 

and seven 4f orbitals (Table 1.2).

n

l

ml

0 1

3

0 �1�1 �2 �1 �1 �20 0

2

3s 3p 3d

FIGURE 1.2 The possible 
sets of quantum numbers for 
n 5 3.

TABLE 1.2 Correspondence between angular momentum 

number l and number of orbitals

l Value Number of orbitals

0 1

1 3

2 5

3 7

WORKED EXAMPLE 1.1
Give the set of quantum numbers that describe the 4d orbitals.

Answer

The 4d orbital must have a principal quantum number n 5 4.

For d orbitals, l 5 2 and therefore ml 5 22, 21, 0, 11, 12. ■

1.2 Shapes of the Atomic Orbitals

Representing the solutions to a wave equation on paper is not an easy task. In 

fact, we would need four-dimensional graph paper (if it existed) to display the 

complete solution for each orbital. As a realistic alternative, we break the wave 

equation into two parts: a radial part and an angular part.

Theoretically, we can go on and on, but as we will see, the f orbitals repre-

sent the limit of orbital types among the elements of the periodic table for 

atoms in their electronic ground states.
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Each of the three quantum numbers derived from the wave equation rep-

resents a different aspect of the orbital:

The principal quantum number n indicates the size of the orbital.

The angular momentum quantum number l represents the shape of the 

orbital.

The magnetic quantum number ml represents the spatial direction of the 

orbital.

The spin quantum number ms has little physical meaning; it merely allows 

two electrons to occupy the same orbital.

It is the value of the principal quantum number and, to a lesser extent the 

angular momentum quantum number, which determines the energy of the 

electron. Although the electron may not literally be spinning, it behaves as if it 

were, and it has the magnetic properties expected for a spinning particle.

The s Orbitals
The s orbitals are spherically symmetrical about the atomic nucleus. As the 

principal quantum number increases, the electron tends to be found farther 

from the nucleus. To express this idea in a different way, we say that, as the 

principal quantum number increases, the orbital becomes more diffuse. A 

unique feature of electron behavior in an s orbital is that there is a f nite prob-

ability of f nding the electron close to, and even within, the nucleus. This pen-

etration by s orbital electrons plays a role in atomic radii (see Chapter 2) and 

as a means of studying nuclear structure.

An orbital diagram is used to indicate the probability of f nding an elec-

tron at any point in space. We def ne a location where an electron is most 

probably found as an area of high electron density. Conversely, locations with 

a low probability are called areas of low electron density. Orbital diagrams of 

the angular functions of the 1s and 2s orbitals of an atom are compared in 

Figure 1.3. In both cases, the tiny nucleus is located at the center of the 

spheres. These spheres represent the region in which there is a 99 percent 

probability of f nding an electron. The total probability cannot be repre-

sented, for the probability of f nding an electron drops to zero only at an 

inf nite distance from the nucleus.

The probability of f nding the electron within an orbital will always be pos-

itive (since the probability is derived from the square of the wave function and 

squaring a negative makes a positive). However, when we discuss the bonding 

of atoms, we f nd that the sign related to the original wave function has impor-

tance. For this reason, it is conventional to superimpose the sign of the wave 

function on the representation of each atomic orbital. For an s orbital, the sign 

is positive.

In addition to the considerable difference in size between the 1s and the 2s 

orbitals, the 2s orbital has, at a certain distance from the nucleus, a spherical 

surface on which the electron density is zero. A surface on which the probabil-

ity of f nding an electron is zero is called a nodal surface. When the principal 

FIGURE 1.3 Representations 
of the shapes and 
comparative sizes of the 1s 
and 2s orbitals (computer-
generated representations by 
Andrzej Okuniewski).

2s

1s
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quantum number increases by 1, the number of nodal surfaces also increases 

by 1. We can visualize nodal surfaces more clearly by plotting a graph of the 

radial density distribution function as a function of distance from the nucleus 

for any direction. Figure 1.4 shows plots for the 1s, 2s, and 3s orbitals. These 

plots show that the electron tends to be farther from the nucleus as the princi-

pal quantum number increases. The areas under all three curves are the same.

The p Orbitals
Unlike the s orbitals, the p orbitals consist of two separate volumes of space 

(lobes), with the nucleus located between the two lobes. Because there are 

three p orbitals, we assign each orbital a direction according to Cartesian 

coordinates: px, py, and pz. Figure 1.5 shows representations of the three 2p 

orbitals. At right angles to the axis of higher probability, there is a nodal 

plane through the nucleus. For example, the 2pz orbital has a nodal Plane in 

the xy plane. In terms of wave function sign, one lobe is positive and the 

other negative.

If we compare graphs of electron density as a function of atomic radius 

for the 2s orbital and a 2p orbital (the latter plotted along the axis of higher 

2s

Distance (nm)
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1.0 1.2
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FIGURE 1.4 The variation of 
the radial density distribution 
function with distance from 
the nucleus for electrons in 
the 1s, 2s, and 3s orbitals of a 
hydrogen atom.

2px 2pz2py

FIGURE 1.5 Representations 
of the shapes of the 2px, 2py, 
and 2pz orbitals (computer-
generated representations by 
Andrzej Okuniewski).



probability), we f nd that the 2s orbital has a much greater electron density 

close to the nucleus than does the 2p orbital (Figure 1.6). Conversely, the sec-

ond maximum of the 2s orbital is farther out than the single maximum of the 

2p orbital. However, the mean distance of maximum probability is the same for 

both orbitals.

Like the s orbitals, the p orbitals develop additional nodal surfaces within 

the orbital structure as the principal quantum number increases. Thus, a 

3p orbital does not look exactly like a 2p orbital since it has an additional nodal 

surface. However, the detailed differences in orbital shapes for a particular 

angular momentum quantum number are of little relevance in the context of 

introductory inorganic chemistry.

The d Orbitals
The f ve d orbitals have more complex shapes. Three of them are located 

between the Cartesian axes, and the other two are oriented along the axes. In 

all cases, the nucleus is located at the intersection of the axes. Three orbitals 

each have four lobes that are located between pairs of axes (Figure 1.7). These 

orbitals are identif ed as dxy, dxz, and dyz. The other two d orbitals, dz2 and dx22y2, 

are shown in Figure 1.8. The dz2 orbital looks somewhat similar to a pz orbital 

(see Figure 1.5), except that it has an additional doughnut-shaped ring of high 

electron density in the xy plane. The dx22y2 orbital is identical to the dxy orbital 

but has been rotated through 458.

3dxy 3dxz3dyz

FIGURE 1.7 Representations of the shapes of the 3dxy, 3dxz, and 3dyz orbitals 
(computer-generated representations by Andrzej Okuniewski).

FIGURE 1.8 Representations of the shapes of the 3dx22y2 and 3dz2 orbitals 
(computer-generated representations by Andrzej Okuniewski).

3dx2 − y2 3dz2
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FIGURE 1.6 The variation of 
the radial density distribution 
function with distance from 
the nucleus for electrons in 
the 2s and 2p orbitals of a 
hydrogen atom.
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The f Orbitals
In the opening section of the chapter, we saw that the elements corresponding to 

the f lling of the 4f orbitals are of great importance in our lives. The f orbitals are 



8 CHAPTER 1 / The Electronic Structure of the Atom: A Review

even more complex than the d orbitals. There are seven f orbitals, as there are 

seven possible ml values corresponding to l 5 3. Orbitals are mathematical con-

structs derived from the wave equation, and particularly for the f orbitals, there 

are different sets of solutions each set giving rise to a different-shaped set of 

f orbitals. In Figure 1.9, the cubic set of f orbitals is shown as it logically relates 

to the d orbitals. First, there is a set of three orbitals, fx3, fy3, and fz3, which resem-

ble the dz2 orbital with lobes along one axis, but with two “doughnut rings” for 

the f orbitals. Then the other four orbitals of the cubic set have eight lobes 

each, the f rst three being identical, but with the lobes rotated 458 from each 

other: fx(z22y2), fy(z22x2), and fz(x22y2). The fourth of the eight-lobed f electrons is 

the fxyz which has all eight lobes between all of the axes.

1.3 The Polyelectronic Atom

In our model of the polyelectronic atom, the electrons are distributed among 

the orbitals of the atom according to the Aufbau (German: building-up) prin-
ciple. This simple idea proposes that, when the electrons of an atom are all in 

the ground state, they occupy the orbitals of lowest energy, thereby minimizing 

the atom’s total electronic energy. Thus, the conf guration of an atom can be 

described simply by adding electrons one by one until the total number 

required for the element has been reached.

4fyff 3

4fyff (z2�x2)4fxff (z2�y2)

4fzff (x2�y2)

4fxff 3 4fzff 3

4fxff yz

FIGURE 1.9 Representations 
of the shapes of the cubic 
set of the seven f orbitals 
(computer-generated 
representations by Andrzej 
Okuniewski).
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Before starting to construct electron conf gurations, we need to take into 

account a second rule: the Pauli’s exclusion principle. According to this rule, no 

two electrons in an atom may possess identical sets of the four quantum num-

bers. Thus, there can be only one orbital of each three-quantum-number set 

per atom, and each orbital can hold only two electrons—one with ms 5 11
2 and 

the other with ms 5 21
2.

Filling the s Orbitals
The simplest conf guration is that of the hydrogen atom. According to the 

Aufbau principle, the single electron will be located in the 1s orbital. This con-

f guration is the ground state of the hydrogen atom. Adding energy would raise 

the electron to one of the many higher energy states. These conf gurations are 

referred to as excited states. In the diagram of the ground state of the hydrogen 

atom (Figure 1.10), a half-headed arrow is used to indicate the direction of 

electron spin. The electron conf guration is written as 1s1, with the superscript 

“1” indicating the number of electrons in that orbital.

With a two-electron atom (helium), there is a choice: the second electron 

could go in the 1s orbital (Figure 1.11a) or the next higher energy orbital, the 

2s orbital (Figure 1.11b). Although it might seem obvious that the second 

electron would enter the 1s orbital, it is not so simple. If the second electron 

entered the 1s orbital, it would be occupying the same volume of space as the 

electron already in that orbital. The very strong electrostatic repulsions, 

the pairing energy, would discourage the occupancy of the same orbital. 

However, by occupying an orbital with a high probability closer to the 

nucleus, the second electron will experience a much greater nuclear attrac-

tion. As the nuclear attraction is greater than the inter-electron repulsion, the 

actual conf guration will be 1s2.

In the lithium atom the 1s orbital is f lled by two electrons, and the third 

electron must be in the next higher energy orbital, the 2s orbital. Thus, lithium 

has the conf guration of 1s22s1. For beryllium, a fourth electron needs to be 

added to the electron conf guration. As for the helium case above, the energy 

separation of an s and its corresponding p orbitals is greater than the pairing 

energy. Thus, the electron conf guration of beryllium will be 1s22s2 rather than 

1s22s12p1.

Filling the p Orbitals
Boron marks the beginning of the f lling of the 2p orbitals. A boron atom has 

an electron conf guration of 1s22s22p1. Because the p orbitals are degenerate 

(that is, they all have the same energy), it is impossible to decide which one of 

the three orbitals contains the electron.

Carbon is the second ground-state atom with electrons in the p orbitals. 

Its electron conf guration provides another challenge. There are three possi-

ble arrangements of the two 2p electrons (Figure 1.12): (a) both electrons in 

one orbital, (b) two electrons with parallel spins in different orbitals, and 

(c) two electrons with opposed spins in different orbitals. On the basis of 

electron repulsions, the f rst possibility (a) can be rejected immediately. The 

1s

FIGURE 1.10 Electron 
conf guration of a hydrogen 
atom.

FIGURE 1.11 Two possible 
electron conf gurations for 
helium.

(a) (b)

2s2s

1s1s

2p

(a)

2p

(b)

2p

(c)

FIGURE 1.12 Possible 2p 
electron conf gurations for 
carbon.
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decision between the other two possibilities is less obvious and requires a 

deeper knowledge of quantum theory. In fact, if the two electrons have paral-

lel spins, there is a zero probability of their occupying the same space. How-

ever, if the spins are opposed, there is a f nite possibility that the two electrons 

will occupy the same region in space, thereby resulting in some repulsion and 

a higher energy state. Hence, the parallel spin situation (b) will have the low-

est energy. This preference for unpaired electrons with parallel spins has 

been formalized in Hund’s rule: When f lling a set of degenerate orbitals, the 

number of unpaired electrons will be maximized, and these electrons will 

have parallel spins.

After the completion of the 2p electron set at neon (1s22s22p6), the 3s and 

3p orbitals start to f ll. Rather than write the full electron conf gurations, a 

shortened form can be used. In this notation, the inner electrons are repre-

sented by the noble gas symbol having that conf guration. Thus, magnesium, 

whose full electron conf guration would be written as 1s22s22p63s2, can be rep-

resented as having a neon noble gas core, and its conf guration is written as 

[Ne]3s2. An advantage of the noble gas core representation is that it empha-

sizes the outermost (valence) electrons, and it is these electrons that are 

involved in chemical bonding. Then f lling the 3p orbitals brings us to argon.

Filling the d Orbitals
It is at this point that the 3d and 4s orbitals start to f ll. The simple orbital 

energy level concept breaks down because the energy levels of the 4s and 3d 

orbitals are very close. What becomes most important is not the minimum 

energy for a single electron but the conf guration that results in the least num-

ber of inter-electron repulsions for all the electrons. For potassium, this is 

[Ar]4s1; for calcium, [Ar]4s2.

In general, the lowest overall energy for each transition metal is obtained 

by f lling the s orbitals f rst; the remaining electrons then occupy the d orbitals. 

Although there are minor f uctuations in conf gurations throughout the d-block 

and f-block elements, the following order can be used as a guide:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p

Figure 1.13 shows the elements organized by order of orbital f lling.

This order is shown as an energy-level diagram in Figure 1.14. The orbitals 

f ll in this order because the energy differences between the s, p, d, and f orbit-

als of the same principal quantum number become so great beyond n 5 2 that 

they overlap with the orbitals of the following principal quantum numbers. It 

is important to note that Figure 1.14 shows the f lling order, not the order for 

any particular element. For example, for elements beyond zinc, electrons in the 

3d orbitals are far lower in energy than those in the 4s orbitals. Thus, at this 

point, the 3d orbitals have become “inner” orbitals and have no role in chemi-

cal bonding. Hence, their precise ordering is unimportant.

Although these are the generalized rules, to illustrate how this delicate 

balance changes with increasing numbers of protons and electrons, the outer 
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